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PREFACE

This Project Report (PR) describes the Air Weather Service (AWS) Model Output
Statistics (MOS) System developed at the Air Force Global Weather Central
(AFGWC), Offutt AFB, Nebraska. Emphasis is placed on the AWS MOS system's
integration into the AFGWC production scheme, its capabilities, limitations,
and the options available.

The AWS MOS system was tested operationally for 18 months. The verification
results from the test showed very limited skill. Because of this HQ AWS
terminated the production of operational AWS MOS forecasts., Further

development of AWS MOS equations has been postponed until sufficient spectral
model data has been archived.

The authors wish to thank those who were most responsible for the production
of this PR:

Lt Col Frank Globokar for his pioneer work with TDL in developing MOS software
and for his management efforts that established an AWS MOS capability at
AFGWC; SMS John Martin for his tireless and masterful programming of the
original AWS MOS system with all its highly automated features; SSgt Kenneth
Nelmes and SrA Gregory Gaddis for their similarly significant contributions in
the evolving MOS software; Maj Bryan Lilius for pulling this Project Report
together in its late editorial phase; Rhonda Fischer and Mary Ann Kosmicki in
the word processing center, without whose support the publication date would
certainly have been another year away; Col Kenneth German (Chief, Technical
Services Division, AFGWC), Major Kenneth Peterson and Capt Jeanette Baker (TDL
Liaison Officers), Mr Jon Whiteside (USAFETAC/OL-A), and Lt Col Peter Havanac
(USAFETAC/DN) who contributed significant comment to the final publication.
Finally, We give special thanks to Dr Harry Glahn (Director, TDL) whose
original brilliance and insight brought the world Model Output Statistics.
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l. INTRODUCTION

Model Output Statistics (MOS) is a statistical procedure that allows one to
use mathematics and dynamic model outputs to forecast or diagunose some unkuown
quantity. The traditional application of MOS has been to forecast the
sensible weather elements; that is, the weather clements a surface=based
observer would report. MOS as a procedure can gencrate forcecast equations
that yield either scalar or probability responses.

MOS support is currently available from two sources. The National Weather
Service (NWS) produces MOS forecasts at the National Meteorological Center
(NMC) in Suitland, Maryland, and develops and maintains the system at their
Techniques Development Laboratory (TDL) in Silver Spring, Maryland. The Air
Weather Service (AWS) developed, produced, and maintained its system at the
AFGWC, Offutt AFB, Nebraska. The NWS MOS system supports civilian and DOD
locations throughout the contiguous United States (CONUS) and Alaska. The AWS
MOS system supported the DOD in providing forecast guidance for locations in
the Western Pacific/SE Asia, Europe, Middle East, and NE Africa. The
procedure for DOD support using NWS MOS was to first acquire the raw MOS
forecasts twice daily for some 362 CONUS and 39 Alaska locations, and secondly
to apply software within the AFGWC computer systems to format the MOS
bulletins and MOS maps that AWS forecasters use.

s cawmAAL vl

AWS has long had weather support customers who required probability
information on expected mission-limiting weather events. Historically, the
solutions to this support werc manual production with tailored
support-specific mathematical solutions., The burden of increasing demands for
this type of support and the attendant high cost led AWS to investigate
alternative means to systemize the probability forecasting business; hence the
interest in TDL's development of the MOS technique. MOS was a clever means to
solve a large number of probability forecast support problems with one
objective, computer-based system. For economic reasons alone, this was a
desirable methodology to seek for AWS applications. In the best spirit of
joint cooperation, the AWS and NWS now share the TDL MOS development subsystem
to support both military and civilian locations in the CONUS and Alaska.
llowever, only an AWS MOS system could best serve DOD support neceds in terms of
its global support mission and the need to tailor many forecasts to unique
miiitary requirements. The AWS MOS capability was spawned from TDL's
inventiveness and experience, but In many respects has surpassed its
forebearer in capability. The AWS MOS system is more flexible to change and
more expandable., It has a more comprehensive climatology support subsystem,
and has an impressive level of automation in the development of the forecast
equations. For example, a complete set of equations--all elements, all time
periods, primary and backup sets, 00 and 12Z cycles, and all regions

g support-—could be solved, if the computer were not interrupted, in only one
job submission! This configuration gives AWS the low-cost, expansive, easily
maintainable, and responsive probability forecast production system it needed.
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2. HISTORY

2.1 Basic Methodologies. Probability forecasting is not a new idea, nor Is
MOS the first practical solution to come along. There are three basic
methodologies that were evolutionary in time and in accuracy that encompass
nearly all techniques: classical statistics, perfect prog, and MOS.

2.1.1 Classical Statistics. Wide use of means, data stratification, and
simple statistical models were the early ways to solve some forecast
assistance problems. Applications include climatology tables, local studies
based on relationships inferred between observed data (e.g., surface
observations and upper air soundings) and observed weather later in the day,
map typing (e.g., how many times does it snow with such-and-such synoptic
pattern to the west of the station), rules of thumb, and simple regression
models or discriminant functions. See Panofsky and Brier (1965) for more
insight and examples.

2.1.2 Perfect Prog. This method (Klein, 1971) establishes diagnostic
relationships among same-time observed upper air parameters and observed
sensible weather elements, Multivariate regression is used to establish the
degree to which parameters are important in this relationship and in the
assessment of relative weights thereof. Once a satisfactory diagnostic
relationship (normally in the form of a statistical equation) is established,
the equations are overlayed onto the dynamic model forecast fields (or
prognoses) and solved as though these fields were future analyses. This
procedure works well under the assumption that the prognoses are perfect.
Although this technique works very well and is an improvement over more
simplistic classical statistical solutions, the fact remains that the progs
are not perfect, and will grow in error as time advances. Therefore, use of
the diagnostic perfect prog equations will reflect the dynamic model's biases
in predicting associated future weather elements.

2,1.3 M0S. Glahn and Lowry (1972) did the obvious (on hindsight)--if the
dynamic model's biases introduce bias to the predicted weather, why not use
the dynamic model's output as the source of predictability? This approach
would permit the statistics of the situation to account for model biases and
to provide for an unbiased solution. Now, the statistical equations that were
solved through this association were only limited in their ability to
accurately forecast future weather by the limited ability of the dynamic model
to do its part. Improve the dynamics and MOS will improve the terminal
forecast. The obvious limit in dynamic model performance would return us to
the perfect prog solution, but even with an absolutely perfect prog, the
statistical equations cannot perfectly diagnose the weather as seen from the
ground. There are many real reasons for this of course, but improvements can
still be made in (1) closing the accuracy gap by identifying new predictors
that account for the non-linearities in the atmosphere, (2) introducing and
using statistical procedures that will improve the equations themselves, and
(3) modifying centralized MOS forecasts by the local forecaster to account for
local effects that are not always easily captured in a grand centralized sensc.
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2.2 Background. In the early 1970's:AWS became {nterested {n this emerging

MOS technology and establiished its first, one-man, liaison office at DlL.

7
s

I’:l '

L e ¢
e
'

e This first office assisted TDL scientists in the develapmeat of the first MOS
(’ 1 systew=—a goal to overcome a growing, I'rapmentiatlon problem as wore MOS

% ; :
T lorecast elements began to cater production. This office also contributed in
oy

the development of new MOS products (5-category ceiling and visibility and
3-category flying weather) for CONUS civilian locations. 1In the mid 1970's
the second TDL liaison office arranged for over 100 NWS MOS bulletins for DOD
locations to be transmitted to AFGWC where they were decoded for internal
support of the AFGWC forecasters. The current 6-category ceiling and
visibility and 4-category cloud cover MOS forecast equations were developed.
In the late 1970's, AWS got more serious about the MOS issue: three AWS
scientists were sent to the liaison office at TDL and AFGWC was tasked to
develop an AWS MOS system for DOD support. This three-man liaison office
changed the amount and form of MOS data transfer to AFGWC sending 10 times the
original information flow at the same communications costs, expanded the TDL
MOS system to include 54 and 60-hour forecasts, added DOD wind, temperature,
and altimeter forecasts, added a new element to the TDL system——obstructions
to vision, and kicked off the Alaskan MOS effort in cooperation with other TDL
scientists so that both civilians and military users could get Alaskan MOS
support. In the early 1980's the AWS MOS system at AFGWC went on line with
overseas support. The fourth TDL liaison office got the job of maintaining

L.

;. l. ' l. :
7,1

2
.
e

ANES and improving the NWS MOS link to AFGWC. The mid 1980's will witness a

P significant change in the AWS MOS system with the introduction of the spectral
,{jﬁ global dynamic model which will replace the hemispheric-limited dry PE models
r**t, currently in use at AFGWC. The spectral model is demonstrated to be more

accurate and will allow AFGWC to likewise produce more accurate AWS MOS
guidance. Not only will AWS attain a more accurate set of MOS products, but
will also have the ability to expand to a truly global scope—-one that is

L {3
. ~
. LA

53¢ strained by today's dynamic models. Beyond the mid 1980's support of DOD
peEs: missions worldwide through the MOS system could enter a high level of
::¢: sophistication. The automated interfaces of tomorrow's command and control
B - and weather support systems beg for this conceptual capability: to be able to
sit down at a computer terminal and request a terminal forecast for any point

D! in the worlde With a global dynamic model, computer access by the users

o (WWMCCS, AWDS, etc.), talent to operate and maintain the AWS MOS system, and
q}: visionary managers and planners, this is not an unthinkable goal or reality.
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3. MOS EQUATIONS

The MOS equations (Klein and Glahn, 1974) are the heart of the MOS
capability. They are, collectively, the model that converts "known" values
into future expectations. They can yield probability or scalar estimations.
They are typically a linear, least—squares regression model of the form:

Y = ag + a3 X3 +a) Xg + «e0 +ag Xy + e

Here, the X~terms are the "known" values, or the independent variables. The
Y-term is the predicted event, or the dependent variable. The a-terms are
coefficients which are the optimum weights assigned tc each independent
variable (also known as predictors) through a statistical procedure called
least-squares regression analysis. The number of terms (k) is determined
either by the dnalyst's choice or by an error convergence check built into the
computer program that performs the regression analysis. The e-term is the
error left when fitting this model to real data. There arc many least-square:
regression procedures to use, but the procedure used by both the NWS and AWS
110S development subsystems is called forward step-wisc selecction. This
procedure picks the predictor (of the many offered) that has the highest
correlation with the dependent variable (also known as the predictand) as the
first predictor. If we stop at this point, we have a single-predictor
equation:

Y' ‘=tdg + aj X3

Here, the a-terms are minimum variance, unbiased estimators, and Y' is the
modeled estimate of the predictand. This should be recognized as an equation
of a straight line, where a, is the y-intercept and aj is the slope of the
line. The use of this equation to reproduce the predictand events can be
measured through the correlation coefficient (R) between the equation-produced
values (Y') and the observed values (Y). The range of the R-value is between
zero and one, where R=0 means no relationship and R=1 means perfect
relationship (i.e., where ¢=0). Of course, in the real world of MOS equations
development, the R-value falls sumewhere in between. The R~value can be used
as a means to select more predictors, one-by-one. The second predictor is the
one which when put into regression with the established single-predictor
equation will yield the largest updated R-value. This would give a 2-term
linear model:

Y'=a0+aIX1+:12X2

The reader should understand that all of the coefficients change as more
oredictors enter regression. Before being satisfied that this 2-term equation
is preferred over the l-term equation, the R-values of each are examined. 1€,
for example, the increase in R exceads .01, then the 2-term equation is
accepted and a third term is sought. Eventually, a term is found that will
not improve the updated R-value by more than .0le At this point the computer
program halts and prints out the equation that does not include the latest,
unacceptable term; hence the final result:

Y' =ﬂn+c\l X‘l ”'12 X')."' ooo+ﬂk Xk
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This multivariate (many predictors or dimensions) linear regression model can
be made to create probability or scalar estimates by a simple alteration of
the predictand event. An equation to forecast probabhilities, for example, is
created by defining the predictand as a binary (0 or 1). Using a binary
predictand in the regression computations forces the coefficients to weigh the
predictors in such a way as to best fit a 0 or a 1. Depending on the
mathematical regression model used, forecasts (Y') may at time fall outside
the (0,1) range. To generate a MOS equation that will forecast scalar values,
the predictand data is kept in its scalar (or some scaled) form.
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4. AWS MOS SYSTEM

The AWS MOS software is divided into four subsystems. These are the (1) data
archive subsystem, (2) the development subsystem, (3) the operational
subsystem, and (4) the verification subsystem. This chapter describes the
flow and processing of data through the subsystems.

4.1 Data Archive Subsystem. This subsystem begins with the flow of upper air
i and surface observations, satellite reports, and other miscellaneous reports
into the AFGWC data base (figure 1). This data base provides the
initialization for the AFGWC numerical models. The model outputs used by MOS
come from the AWS Primitive Equation (AWSPE) model, the AFGWC 5-Layer cloud
forecast model (5LYR), and the 3-dimensional cloud nephanalysis uiodel
(3DNEPH). In-house data procedures have been established to capture the AWSPE
and 5LYR models. These data are saved on 6250 bpi 9-track computer tapes.

The 3DNEPH output is archived at USAFETAC/OL-A and must be retrieved along
with the surface observations. Figure 2 shows currently archived areas for
the AWSPE and 5LYR models as well as current 3DNEPH windows that are on hand
at HQ AFGWC. All 3DNEPH data are archived at USAFETAC/0L-A, but requests are

3, for only those areas needed to meet current requirements for equation
development.,

4.1,1 AWSPE Data Collection. Forecast fields from the AWSPE model are
archived over the Northern Hemisphere octagon 47 by 51 whole~mesh grid. Grids
for all AFGWC models are described in great detail by Hoke et.al. (1981).

Forecast filelds saved are given in Table 1. The AWSPE model is described by
Tarbell et.al., (1982).

Table 1. Variables Archived from AWSPE. All variables are
archived at 06, 12, 18, 24, 30, 36, 48, 60, and 72 hour projections.

5 Variable Levels (mb) Units

ﬁQ U and V wind 1000, 850, 700, msec ~1 x 10
components 500, 300, 200

Temperature Surface, 1000, 850, deg K
700, 500, 300, 200

D-value 1000, 850, 700, m x 10
500, 300, 200

Vertical Velocity 1000, 850, 500, 300 mbsec ~1 x 104
Absolute Vorticity 500 sec "1 x 106
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Present Data Archive Areas for the AWS MOS System

Figure 2.
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A,
f;i: 4,1.2 Five Layer Data Collection. Forecast fields from the 5LYR model are
{¢§: archived over the grids shown in Figure 2 (US, European, and Asian half-mesh
e grids). The three grids contain 37x39, 35x41, and 35x41 grids points,
l respectively. The fields that are saved are given in Table 2. Further

N details on the 5LYR model are given by Mitchell (1982),

"‘C\'

:}ﬁ Table 2, Variables Archived from AFGWC 5LYR Cloud Forecast Model

L :

':ig Variable Level (mb) Units Projection

peperd Condensation Pressure Gradient mbx10 6,12

R Spread (CPS) 850,700

N

{:} Total Cloud Cover - Percent 6, 12, 18, 24,
3+ 30, 36, 42, 48
AT Layered Cloud Gradient, 850, 700, Percent 6, 12, 18, 24,
XN 500, 300 30, 36, 42, 48
.'.\
N Temperature Gradient, 850, 700, deg Kx10 6, 12, 18, 24,
oy 500, 300 30, 36, 42, 48
t.: Dew Point Gradient, 850, 700, deg Kx10 6, 12, 18, 24,
o 500, 300 30, 36, 42, 48
P QPF - Inchesx100 12, 24, 48

- 3 hr X-Displacement 850, 700, 500, 300  Grid Units x 10 6, 12, 18, 24,
e 2 30, 36, 42, 48
g\:i\

0 3 hr Y-Displacement 850, 700, 500, 300  Grid Units x 10 6, 12, 18, 24,
Nl : 2 30, 36, 42, 48

| .

ot 3hr Vertical 850, 700, 500, 300 mb x 10 6, 12, 18, 24,
- Displacement 30, 36, 42, 48
;5{: 4,1.2 3DNEPH Data Collection. Cloud analysis fields generated by the 3DNEPH
;l,ﬁ model are produced at AFGWC and shipped to USAFETAC/OL-A for archive. For use
7132 in MOS development, the fields are retrieved for specific areas. Those areas

= fcr which AFGWC/TSMS currently retains data are shown in Figure 2. The 3DNEPH

s model is described in detail by Fye (1978). Table 3 lists variables archived
fon s from the 3DNEPH,
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Table 3., Variables Archived from the 3DNEPH Cloud Analysis Model.
Data is saved for every 3-hourly cycle (00-21).

Variable Unit Layers
Cloud Type 1-15 Low, Mid, High

. Present Weather 0-9 (WMO COBE 4677) -
e

e Maximum Tops 0-99 (WMO Code 1677) -

) Minimum bases 0-99 (WMO Code 1677) =

o

.\?n Total Cloud Cover Percent =

-ﬁ:b: Layered Cloud Cover Percent 1-15

o “-‘.

8 4.1.4 Surface Observations Data Save. When a requirement exists to produce
@(“ MOS forecasts in an area, AFGWC/TSMS requests surface observations for the
;if: area from USAFETAC/OL-A. OL-A screens surface observation records from the
785 area 1ldentifying those stations which have the best data. This station list
Lo is then furnished to TSMS to be used in data interpolation and to USAFETAC/DN
. 24p for use in developing modeled climatology. Surface observation data for the
R required season are then processed into the MOS format at OL-A. Table 4 lists
}}}J those surface weather elements that are archived for MOS.

Wi

Ayl Table 4. Archived Surface Weather Elements
( Element Unit

-.‘_-:"

o Sea level pressure mb x 10
! lu:'::'
Pl i-s Obstruction to Visibility Coded
s 0 = None of the following

; 1 = Smoke (K)

e 2 = Haze (H) and smoke and haze (HK)
S 3 = Blowing obstruction (BD, BN, BS, BY)
NS 4 = Fog (F)

e 5 = Ice Fog (IF)

s 6 = Ground Fog (GF)
oo Ceiling ££/100 (Unlimited = 888)

NN

oo

ol

-

'.;'.:l;:

i

v
Lzl
2%
:-;.:-__.: 10
2o

N -_- ".‘_-..-_\..- .,x,. \’.\\ T _\. .\....‘..\...\ \\‘ _\. \‘\ .\~ ? . ) sk, - T I s SERE B 0

el ol ot PRI, IR Y OO r S "_J_:."




-
AR YAATNAN

.

Visibility

Present Weather

Dew Point

Wind Direction

Wind Speed

U - Component (Wind)

A i o Sl it i SRR REaR i A

A Table 4.
S' Total Sky Cover

Archived Surface Weather Elements (Continued)

Code
0:

ONOWMELND -
W w w unn

d

clear

partial obscuration
thin scattered

thin broken

thin overcast

scattered
broken
overcast
obscured
meters
Coded
0 = None of the following
1=1-, L—
k=50
Q=2
4 = R-,R--
5S=R
6 = R+
7 = RW~-, RW—-
8 = RW
9 = RW+
10 = zL-, Z2I--
11 = ZL
12 = ZL+
13 = ZR-,ZR~--
14 = ZR
15 = ZR+
16 = any combination of frozen
precipitation
17 = 1p-, IP-—-, IPW-, IPW--
18 = 1P, IPW
19 = 1P+, IPW+
20 = S-, $—, SP~-, SpP——,
21 =3, SP, G
22 = S+, SP+, SG+
23 = SW-, SW~-
24 = SW
25 = SW+
Degrees Kelvin
Degrees of the compass (reported to
nearest ten degrees)
Knots
Knots

11
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ﬁu;u Table 4. Archived Surface Weather Elements (Continued)

.,-\.‘.::: V - Component (Wind) Knots
SRR
: =y Temperature Degrees Kelvin
‘::? 6 -~ Hour Precipitation Amount Millimeters
S5
',jﬁ','..:l Maximum and Minimum Degrees Kelvin
et Temperature
) B Severe Weather Coded
»:;::.:Z 0 = None of the following
i 1 = Squall (Q)
e 2 = Thunderstorm (T)
N\ 3 = Severe Thunderstorm (TS)
4 = Hail (A)
§ 5 = Tornado
Y-
N Snow Depth Coded
?S‘ 0 = None
Frier 1 = Trace
N 2 = 1 inches
s 3 = 2 inches
'~"$‘-: 4 = 3 inches
XN 5= 4 inches
e 6 = 5 inches
}E}}' 7 = 6~10 inches
DA 8 = 11-20 inches
{ 9 = over 20 inches
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4,1,5 Climatology. Modeled climatology for the MOS system is prepared by
USAFETAC/DNO. As of this date climatology for ceiling, visibility and surface
wind (u,v components and speed) have been made available to AFGWC for all
areas for which equations have been developed. The system provides
climatology at synoptic hours for every month of the year. Since the
climatology is modeled, the probability distributions can be derived for any
categorical breakpoints desired. For ceiling and visibility these categories
correspond to the forecast categories. An attempt is made to obtain
climatology for each station on the development station list identified by
USAFETAC/OL~A. Since this is not always possible the data is “"spread"
(interpolated) to those stations without adequate climatology by an objective
analysis technique developed by Barnes (1964). When data density is
insufficient for this, the only option left is manual entry of best~guess
climatology values. Only MOS prediction equations for ceiling and visibility
were developed using modeled climatology. To obtain better accuracy and
speed, climatology for ceiling, visibility, surface wind and surface
temperature was later regenerated in a “binned" (discrete) format; none of
this was ever used in equation development due to the HQ AWS decision to

terminate the MOS effort until the Global Spectral Model (GSM) data base is
available.

4,2 Development Subsystem. The MOS development subsystem is designed to use
the archived grid-point data from the AWSPE, 5LYR, and 3DNEPH models, surface
observations, climatology, and constants to select those elements that can
best predict surface weather. This subsystem solves the multiple, forward
screening regression necessary to build the MOS prediction equation. Table 5
gives the surface weather elements for which equations are routinely

developed, Figure 1 describes the basic flow of data through the development
subsystem.
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Table 5. MOS Surface Weather Elements

Code Element Type Categories

WND 991 Wind Scalar Speed,U-component,
V-component

SLP 834 Sea Level Pressure - Scalar
TMP 294 Temperature Scalar

COoV 804 Sky Cover Probability Clear, Scattered,
Broken, Overcast

FOG 854 Obstructions to Probability None, Haze and
Visibility Smoke, Blowing
Phenomena, Fog

TRW 364 Thunderstorms Probability Yes/No
POP 604 Precipitation Probability Yes/No

LFZ 404 Precipitation Type Probability Liquid, Freezing,
Frozen

Al LPT 304 Liquid Precipitation Probability Drizzle, Rain,
. Type Showers

C1G 104 Ceiling Probability 0 C1 200 (ft AGL)
200 ¢2 500
500 €3 1000
1000 ¢4 3000
3000 ¢5 10000
10000 C6

VIS 154 Visibility Probability Europe/SWANEA:
0Vl 700 (meters)
700 v2 1800
1800 v3 3700
3700 v4 6000
6000 V5 8000
8000 V6

Asia/Pacific:
0 V1 800 (meters)
800 V2 1600
1600 V3 3200
3200 V4 4800
4800 V5 8000
8000 V6
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4.,2,1 Data Flow. To begin development of forecast equations the gridded
AWSPE and 5LYR data must be interpolated to the individual stations on the
station list obtained from USAFETAC/OL-A. The G300 program performs a
bi-quadratic interpolation where possible, bi-linear in the outside grid
interval, and linear extrapolation outside the grid. The progpram can process
more than one gridded field at a time and can calculate predictor fields that
were not available directly from the model as well as combine predictors
derived from more than one model. Backward trajectory fields are computed
from the AWSPE archived data by the G360 program. The output from G300 and
G360 are merged onto a single tape or disk file called XTAPE which contains
most of the model output predictors used in equation development. The G300
program is used to interpolate the 3DNEPH gridded data to station locations.
These data are merged with the surface observations onto a single tape or disk
file called YTAPE. The climatology data are written onto a third file., The
primary statistical program used to produce regression equations is G600.
This software performs a forward stepwise linear regression to develop an
equation for each surface weather event or category offered. Although the
capability exists for equations of up to 20 terms, only ten terms are used in
the present AWS MOS set of equations. Predictors are taken from the XTAPE,
YTAPE, climatology file, and constants file. G600 has the capability of
producing single~station or pooled-stations (regional) equations. When a
particular set of equations are complete they are packed, tested, and loaded
into a file for operational use.

4.2.2 Regional Equation Development. Due to the short period of archived
data available, it is difficult to capture a sufficient sample of some events
which we need to predict. To overcome this deficiency, the AWS MOS system
employs the regional equation councept. The data are grouped according to
climatological factors and a set of equations is developed that,
theoretically, applies equally throughout the region. This allows forecast
equations to be developed in relatively data sparse regions and gives the
advantage of being able to develop equations with a relatively small (2 to 3
years) data set. The regional concept makes it possible, also, to produce a
forecast for any point in the region whether or not an observation had ever
been taken at that point., The windows for which the AWS MOS system currently
develops equations are shown in Figures 3 through 6. Each window is divided
into a number of regions. The development station list for each region is
listed in appendix B. The criteria for defining each window are given in
Table 6. Even with the regional concept of equation development a complete
equation set includes approximately 39,600 forecast equations requiring over
600 hours of development time on a UNIVAC 1100-series computer, The regional
development concept becomes an obvious necessity.
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Table 6. MOS Windows and Regions

Window Description Number of Regions
EUR Europe 18
ASN Asia (Korea 11
and Japan)
SCs South China Sea 5

(Tawian and Phillippines)

OILPS Near East area which falls within 7
the usable portion of the
European 5LYR archive window

OILPT Near East area outside the 6
5LYER window but within
| the AWSPE octagon

AFRNO African area for which the 3DVNEPH 1
is the only available model

p AFRPT African area outside the 5LYR 2
el window but within the AWSPE octagon

4.3 Operational Subsystem. Once the equation set is developed the equations
can be integrated into the operational subsystem. Figure 7 shows the flow of
data through the operational subsystem. The file CONSTANTS contains constants
that were used in the equation development as predictors. The file FCSTEQN
contains the equations after they have been packed along with the list of
operational stations. The CLIMATOLOGY file contains station climatology for
the operational stations., The operational program produces a file of
forecasts for 0000 or 1200 GMT. Explanations of program execution times and
products are given in in Section 5. Figure 8 gives a detailed diagram of all
executable modules in the G900 runstream and all mass storage files accessed.
An arrow from a file to a particular module indicates that data is being read
from the file. An arrow from the module to the file indicates data is being
written to the file. The following modules make up the operational runstream.
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-fﬂf G980 - determines the cycle of the run (either 0000 GMT or 1200 GMT)
Ao and passes this information to the run condition word.
G910 - builds files MOSEQNSOO and MOSEQNS12 which contain all
e equations and options required for a particular run.
i::: G970 - checks the status of AFGWC data base for the required model
o fields, RHGWCF (5LYR), RTGWCF (AWSPE), RNGRDA(3DNEPH), and
fxi- RTSFC(surface observations). G970 aborts the run if a required
=] model is missing.
ﬁ;i G960 - builds the file TRAJECTORIES. G960 can compute a trajectory
Is- - forecast for any point within the AFGWC Northern Hemisphere
T whole-mesh grid.
AN
J
. G920 - calculates and writes all the predictor fields required for the
e run to the file PREDICTORS.
b
::f G900 - computes forecasts for stations specified on the operational
e station list. G900 writes the forecasts to MOSMATOO and
e MOSMAT12.
e, The execution of G900 terminates the operational runstream, The files
2o MOSMATOO and MOSMAT12 constitute the MOS data base for the 0000 GMT and 1200
}:E GMT cycles. At this point any display program can access the files. The
O following programs make up the MOSXMT runstream which transmits the forecasts
- over the Automated Weather Network (AWN).
‘o DISPAF - reads the MOS forecasts from either MOSMATOO or MOSMAT12 file,
) formats them as bulletins, and writes them to the file FILE.
L MOSSND - transmits the MOS bulletins via the AWN.
SR
e The following programs function off-line as part of the operational subsystem:
g
e G905 - packs equations produced by the development subsystem into the file
i FCSTEQN associating the operational stations with the appropriate
?ﬁi equations.
< G940 - builds directories for files MOSMATOO, MOSMAT12, and CONSTANTS.
b G945 - builds the directory for the file CLIMATOLOGY.
e
N G950 - builds the file CONSTANTS.
k5 ) . .
AR
o G955 - builds the file CLIMATOLOGY.
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Figure 5. South China Sea MOS Window Showing Regions Used in

Equat ion Development
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4.4 Verification Subsystem (MOSVER). Figure 9 shows the flow of data through
the verification subsystem. Forecasts for the MOSMATOO or MOSMAT12 files are
saved daily following the execution of the operational run. Once a day the
verifying surface observations are also saved. At the end of the month the
verification is computed for the month and various statistics are displayed
for analysis and quality control. The forecasts and observations are written
to magnetic tape for permanent storage.

The forecast equations can be evaluated by using the development data base as
input to generate MOS forecasts. These forecasts are verified against the
development data set surface observations. This gives a measure of how well
the forecasts fit the development sample. lowever, the most meaningful
verification for operational use is independent verification.

Each month the MOSVER program produces statistics on the AWS MOS for all

forecast elements and the NWS MOS for ceiling and visibility. The program

calculates the Brier score, prepares contingency tables from the forecasts and {
verifying observations (see Section 6) and computes a number of scores based

on the contingency tables. These scores are bias, prefigurance,

post—-agreement, threat score, and Heildke skill score. The program also

produces a persistence forecast contingency table and calculates an AWS skill

score.
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5. MOS FORECASTING

5.1 Operational Production. AFGWC provides MOS guidance from two sources:
NMC~produced NWS MOS and AFGWC-produced AWS MOS.

5.1.1 The NWS MOS forecasts are generated twice daily at approximately 03152
and 1515Z following the completion of their LFM-II model run. AFGWC receives
the complete MOS forecast files for 362 CONUS and 39 Alaskan locations (see
Appendix 5) via a highly compacted communications package. This package is
called the station-oriented forecast matrix (SOFTRIX). The CONUS SOFTRIX is
received usually between the hours 0400Z and 0600Z for the 0000Z cycle and
between 1630Z and 1830Z for the 1200Z cycle. The Alaska SOFTRIX is a separate
transmission arriving between 0815Z and 0930Z for the 0000Z cycle and between
1930Z and 2100Z for the 1200Z cycle. Reliability of receipt varies for many
reasons, but on the average, transmission receipt success rate is around 90%.
After the SOFTRIX information is loaded into AFGWC's computer systems,
AWS—owned software produces the MOS bulletins. MOS bulletins are produced for
149 CONUS and 13 Alaskan locations., These bulletins provide terminal forecast
guidance from 6 to 48 hours past each cycle time in 6-hour snapshots (Alaska
bulletins begin at the 12-hour point). The SOFTIRIX data files contain most
forecast elements out to 60 hours for all stations. Tables 7 and 8 give
details on the content of the SOFTRIX elements. Details on the bulletin can
be found in AFGWCP/105-1, Vol III. Other AWS MOS-derived products are
extended forecasts (out to 60 hours) for CONUS TAC ranges and Space Shuttle
missions, a 24- to 48-hour Eglin AFB, FL, range forecast message, and several
map-oriented MOS displays (e.g. POP, ceiling probabilities below 3000 feet,
etc.) for the Forecasting Services Division in AFGWC. All of the above
describes an operational mode of operations that depends on joint government
departmental cooperation.

Table 7. SOFTRIX Data Elements

NCODE Elements Type (Unit) Categories
(Ft AGL)
104 Ceiling Probabilty 0 C1 200

200 C2 500
500 C3 1000
1000 c4 3000
3000 ¢5 7500

7500 C6
(ST MILES)

154 Visibility Probability 0 ¥ w2
1/Z2 W L
1 V3 3
3 V4 5
5 V5 6
6 V6

204 Maximum Temperature Scalar (°F)

214 Minimum Temperature Scalar (OF)
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Table 7. SOFTRIX Data Elements (Continued)

NCODE Elements Type (Unit) Categories

294 Temperature Scalar (OF)

304 Liquid Precipitation Type Probability 3-rain, drizzle, showers
364 Thunderstorms Probability l-percent chance

374 Severe Thunderstorms Probability l-percent chance of greater

than 3/4 inch hail or wind
greater the 50 knots in a

thunderstorm
404 Precipitation Type Probability 3-1iquid, freezing, frozen
434 Probability of Snow Probability 1-Snow Accumulation greater
Amount than 4 inches in 12 hours
505 Wind Speed Scalar (Knots)
554 Wind Direction Scalar (0-3600°)
604 6-hour Precipitation (POP) Probability l-precipitation accumulation
greater than .01 inches in
6 hours
614 12-Hour Precipitation (POP) Probability l-precipitation accumulation
greater than .01 inches in
12 hours
664 Dew Point temperature Scalar (°F)
704 6-Hour Precipitation Probability 3-6 hour accumulation
Amount exceeds or equals 1/4, 1/2,
and 1 inch.
714 12-Hour Precipitation Probability 4-12 hour accumulation
Amount exceeds or equals 1/4, 1/2,
1, and 2 inches.
724 24-Hour Precipitation Probability 4-24 hour accumulation
Amount exceeds or equals 1/4, 1/2,
1, and 2 inches.
804 Sky Cover Probability 4-clear,scattered, broken,
overcast
834 Altimeter Setting Scalar (inches)
854 Obstruction to Probability 4-none, haze or smoke,
E}j. Visibility blowing phenomena, fog
Ei:::il
o
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*'«._f: Table 8. Forecast Projections Available in SOFTRIX Data Base i
§.tr.. (C=Continental United States, A=Alaska, 00Z or 12Z=available |
o only with the 0000 or 1200 GMT cycle). |
b7 ;
5'-’ NCODE PROJECTION
3 6 12 18 24 30 3% 4 48 54 60
o
ol 104 € Yea, ‘ea ‘e e cA cA €A C C
o
<o 154 c cA CA CA CA cA ca CA C c
o 204 A-00Z A-12Z A-00Z A-12Z
i 214 A-127 A-00Z A-127 A-007.
g 294 c c c c c c c c c c
:.-.'/: ! 304 © c C c c © c
.-_:.".‘
Ee | 364 c c c
Ny
g 374 c & €
SN 404 CA CA cCA cA CA cA CcA
vy
Yo 434 C c c c C c c
\{;
Y 505 C CA CA CA CA CA CA CA CA CA
1
N 554 ¢ cA cA CaA CA cA cA CA cA cA
R
}& 604 ¢ c c c c c c c-127 c-12z
<0 614 c c c c
o 664 c c c c c c c c c c
K]
gk 704 c ¢ c C c c
=t 714 c c c
Faits, 724 c c c
N 804 c CA CA CA CA cA CA ca G c
‘oY
£ 834 CA CA cA CA cA ca cA cA
ARG 854 CA CA CA CA CcA CA CA CA
A0
,:.:,:: Note: Alaskan NCODE=CONUS NCODE + 3
','\‘:*
sl
. g
-0,
5o 28
o

Al s o oo
» 0,- .'\""‘-" -. -b","

Ch .’- ...’ -'h‘ .
45 "‘"‘_"C\n‘il-'\-"'

J“. »‘ " h\'- ‘\'}. G ‘-\.‘-." :-";-"}-”.-}\



» )
AgA4, )
% K
D P
o o

Mo va o
[ LS
g e

r .
i
I.' ‘.‘?r'—lu"l‘: .'.
ot e la?a

i

2
A

At
al" ;‘:'-" 3

-

7,

)
b
Yol

1
‘l

. .y
!‘ T A
Nt e Tet vt

«te

]
BN

s A 0 4,
,. ‘- A

RN

il R 0 N R P R e S R SO

'

5.1.2 The AWS MOS forecasts are generated twice daily following the completed
run of the SLYR cloud prog model. Normally, MOS forecast files for 286
overseas locations (see Appendix 4) will be built by 0630Z and 1830z
immediately followed by the application programs. As of this date AWS MOS
supports 194 European, 37 Middle-East, 21 NE Africa, and 34 West Pacific/SE
Asian locations. The applications programs so far, only produce the MOS
bulletin format with valid times 12 to 48-~hours in 6-hour snapshots for 16
European, 37 Middle East, 20 NE African, and 34 W. Pac/SE Asian locations. No
forecasts beyond a 48-hour projection are available from the AWS MOS system.
However, saved data is available to set-up MOS equations to provide support
out to 72 hours if needed.

5.2 Capabilities and limitation. The capabilities and limitations of both
MOS systems as they impact potential DOD support are:

5.2.1 Add a station where MOS equations have coverage (i.e., NWS MOS covers
the CONUS, but not Europe).

5.2.1.1 NWS: This can be done because the regionalization of most MOS
equations permits an "anywhere” forecast capability--a surface observation is
not mandatory for input. Requests to add CONUS and Alaskan stations are slow,
however. The TDL liaison officer must be tasked to do the work who must
arrange for changes in the NWS MOS system, allow for normal coordination
through the mail system, and then wait for an implementation date. If the
available file sizes and communications can handle the impact of an additional
station, and the parties within NWS, NMC, and TDL agree, the new support can
be established. Time to accomplish this task can run anywhere between 2 to 6
months,

5.2.1.2 AWS: AWS MOS's in a Contingency Response Capability (CRC)
configuration. If the station is within the confines of an AWS MOS region and
has been prepositioned in the climatology constants file, a new station can be
on-the~air within 24 hours. If the prepositioned climatology file is
unavailable, a new station requires 48 hours under optimum computer support,
but may take up to 4 days.

5.2.2 Add a station where no MOS equation has been developed. The answer to
this problem is valid for both NWS and AWS MOS support: build new MOS
equations and implement. Both systems depend on an archive of forecast model
fields which ultimately becomes the limiting factor.

5¢2.2,1 NWS: The TDL archives the North American LFM-II and the North
American area of the global spectral model outputs for equation development,
Regions outside of these areas cannot use the MOS technology. Demands to
establish new MOS regions outside of the established CONUS and Alaska areas
would be more than the TDL liaison office could muster alone. Even if the
manpower were available, such new areas (depending on how many elements are to
be forecast) would take 1 to 2 years to complete if not longer,

5¢242+2 AWS: AFGWC archives the entire NH AWSPE and three windows of the
5LYR cloud prog (North American, European, and Asia). The NH AWSPE is
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considered usable with respect to its quality of forecast fields north of
220N latitude. Below 229N, the fields are either unreliable or

non-existent. All regions, whether inside or outside these areas, require
support from USAFETAC OL-A for associated 3DNEPH and surface observation data
and from USAFETAC/DNO for climatology support. If a need to develop new MOS
regions 1s identified, 6 to 12 months are needed depending on USAFETAC
response (priority driven), in-house development computer time, and existing
programmer expertise in TSMS.

5.2.3 Add a new forecast element. An example would be combined
ceiling/visibility events such as IFR, MVFR, and VFR.

5.2.3.1 NWS: We would task our TDL liaison office which would develop the
new product for existing supported locations. This would take between 6 to 12
months.

5.2.3.2 AWS: If the surface observation data base can support it, a MOS
forecast equation can be made for any element in 1 to 2 months.

5.3 Probability Versus Scalar Forecasting. The MOS system (Klein, 1978) has
the capability to produce forecasts in terms of a probability of an event
occurrence or in terms of a scalar value. An example of an event which is
ideally suited to probabilities is precipitation——it either occurs or it does
not. This description of a binary event is fundamental to the understanding
of how a MOS equation makes a probability forecasts. On the other hand,
events which might be better suited to scalar form are temperature, wind
speed, and altimeter. However, what is thought to be an ideal form for a
given element may be controlled by several factors that should be examined.

5.3.1 Probabilty Forecasting. Virtually any meteorological event can be
forecast using a probability scheme by partitioning the event into mutually
exclusive and exhaustive categories. An example of this is the 4-category sky
cover of clear (CIR), scattered (SCT), broken (BKN), and overcast (OVC). Each
category is mutually exclusive; that is, if one were to convert the observed
total sky cover from tenths (or eighths) into CLR, SCT, BKN, or OVC,
one-and-only-one category would apply. For example, you cannot observe an
event that will fall in two or more categories at the same time; hence a
mutually exclusive categorization. Fach category is also exhaustive in the
sense that all contingencies are covered by these defined categories: CLR
covers 0/10 (or 0/8), SCT covers 1/10 to 5/10 (or 1/8 to 4/8), BKN covers 6/10
to 9/10 (or 5/8 to 7/8), and OVC covers 10/10 (or 8/8) sky cover. Since we
measure sky cover to the nearest tenth (or eighth), there is no observation
that cannot be catalogued against one of these four categories. What about
obscurations? Those cases are covered by defining which of the four
categories they belong to. For example, partial obscurations can be placed in
the CIR and total obscuration in the OVC categories. Now we're covered. Sky
cover is not limited to four categories. It can just as easily be defined by
categories that match every reportable value plus the two-condition
obscuration for a total of 12 categorles. The preferred way to decide on what
categories to select Is to match them against the categorics that are required
to be forecast. For example, if the requirement is to forecast ceilinp vs noe
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ceiling, then a two-category yes/no categorization is all that is necessary.
This is 2ssentially a single probability value problem. This same procedure
can be applied to temperatures (numerous categories, or perhaps below vs.
above freezing), wind speeds, etc. Some elements are better categorized than
kept in scalar form. Examples are visibility and ceiling. Both visibility
and ceiling have open-ended values that causes a scalar approach to not
perform as well as the categorization approach. The ceiling problem is that
conditions above mid-level cloudiness are recorded by very crude terms such as
"high"”, "250", and "300". How is "high” quantified as a scalar? Also, what
if there is no ceiling, how is that quantified in a ceiling equation? This
problem is avoided by grouping all "high"” and no-ceiling events into a single
category: above 8000 feet or no-ceiling. Visibility has the same problems.
This event is highly localized in possible readings because of
non-standardization in the placement of visibility markers (i.e., any
building, TV tower, or mountain will do).

5¢3+.2 Scalar Forecasting. The clue to deciding whether a particular weather
element would be an acceptable candidate for developing a scalar forecast
equation instead of a probability forecast equation is judgement and common
sense, If the element is considered fairly continuous in nature with no
significant discontinuities, a scalar equation could be used. Here, reference
is made mostly to analog-type events such as temperature, pressure, and wind
where the changes from one response level to another are normally smooth. For
example, when two successive observations show temperature readings of 82°CF
and 90°F, there is high confidence that all the temperatures in between did
occur--they simply were not measured or recorded. The advantages of using
scalar equations are that the output is directly useable (the system says
840F, no more, no less) and needs only one equation versus many in a
multi-category temperature equation set. The disadvantages are that there is
no feel for how good that forecast is in either confidence limits or being
able to convert into a probability environment (e.g. given a temperature
forecast of 84°F, what is the probability that a temperature over 90°F

will be observed?). Another subtle disadvantage is the distribution that
scalar forecasts make as compared to the observed distribution of events. To
illustrate this, consider using total sky cover in a scalar equation form,
Instead of having four equations (one each for CIR, SCT, BKN, and OVC), one
equation can be solved that will provide an answer in tenths (0 to 10). Now,
let's take all the forecasts from such a scalar forecast equation and
categorize them into the four CLR, SCT, BKN, OVC categories. Most of the
forecast will fall in the SCT and BKN categories forming a bell-shaped
distribution. If at the same time a frequency chart is made of the verifying
observations, CLR and OVC conditions will be generally more frequent, thus
forming a U-shaped distribution. If your objective is to create a sky-cover
forecast with minimal absolute error or error variance, the scalar version
will do; but if the objective was to replicate the observed U-shape
distribution, it doesn't. There are at least two methods to obtain forecast
distributions that match observed distributions: categorize for probability
production or stretch-out the scalar forecasts in a specific way. The next
paragraph describes both of these techniques.
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5.4 Classification. Providing probability estimates of future events is
perhaps the most realistic weather one can provide. After all, who can really
tell the future in deterministic terms? The best anyone can do with their
varying degrees of meteorological knowledge, skill, and experience is to
predict in probabilities. Twven when one “"knows” that fog will occur, there
always exists a chance that it won't. Whether this is called event-oriented
forecasting or not, there exists either a level of confidence or probability
of being correct (or incorrect). The underlying < recasting process is in
fact probabilistic, not deterministic, It is only through some classification
scheme that an event-~oriented forecast can be made. In the fog example, that
process is built within the forecaster's "mind.” The MOS system's mind is a
bit more simple than a human's and, therefore, needs an objective procedure to
classify probability forecasts into event—-oriented forecasts. One practical
procedure used in both the NWS and AWS MOS systems is thresholding.

54,1 Probability Thresholding. Given a probability forecast, say p, what is
the forecast choice? That is, will the event occur or not? If the choice is
to predict occurrence at all times and the probability estimates are reliable,
the number of correct forecasts will equal the number of occurrences (i.e.

p times the number of forecasts you make). If the objective is to improve on
this no-skill rate, some judgments will need to be made with respect to the
value p itself. A first simple rule to use is the 50% rule. That is, if

p exceeds 50, then forecast YES the event will occur, and if p is less than
+50, then forecast NO. The decision is now reduced to a simple comparison
between the probability forecast value and a test value called the threshold
probability value (label this p*)., The use of the symbols p and p* makes our
decision rule:

If p exceeds p* forecast YES; otherwise forecast NO. Simple? Yes, but is
p*=.5 the correct threshold value for the forecast problem? Here is where the
utility of the forecasts must be considered. 1In a simple 2x2 contingency
verification table, the frequency of forecast events can be altered by
ad justing p* to lower or higher values. Altering the verification table will
alter the verification scores, optimism/pessimism (bias), and customer
utility., Imagine what would happen if p* was lowered to, say, 0.30. This
means that more forecast probability values would exceed p* under the new
rule, thus permitting more YES forecasts to be made. This 1s what must be
done if an unbiased verification table is sought (see Appendix A). This
discussion deals with probability values, but scalar forecasts can also be
altered to better fit an observed distribution of events. The procedure to do
this is called inflation,

5¢4.2 1Inflation of Scalar Forecasts. Scalar forecasts seem to be easier to
understand than probability forecasts. The output is a single, famillar value
such as 789F, 170° at 12 kts, 29.98 inches, and 7/10 cloud cover. These

are forecasts already made in a categorical sense. For example, the 7/10
forecast 1s categorically a broken (BKN) condition. But if one was to think
of the scalar forecasts in the same way probability forecasts are expected to
behave, what is the scalar forecast's response to categorization? Unlike the
distribution of probability forecasts where there is a clustering about two
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means (those times where the event did not occur and where the event did)
there is only one mean about which the scalar forecasts vary. This mean value
is the same as the mean value of the observed events if the forecasts a:
unbiased. The principal difference between the forecast and observed events
about this mean value is that the forecast values are normally tighter in
their spread from the mean than are the observed events. This performance
characteristic means that the odds of forecasting an outlier event (e.g.,
strong wind speeds) is very low. Conversely, the odds of having a valid
forecast being in effect when an outlier event occurs is likewise low. To
overcome this apparent weakness, scalar forecasts can be inflated to spread
them to match the variability of the observed events distribution. The
inflation formula is:

YY" =¢C+ (Y'-C)/R

where Y" is the inflated forecast
Y' is the original forecast
C is the mean of the event over the development sample
R is the multiple correlation of the equation that produced Y'

Practical applications of the inflation formula include spreading of wind
speeds and cloud cover amounts. The typical problem with using unadjusted
wind speed forecasts was mentioned above; and for cloud cover a sharper (more
clear and cloudy) set of forecasts will result., Again, the application of the
inflation formula is like the probability threshold applications: what is the
desired result? 1f forecasts should match the observed event's distribution,
use the inflation formula. If the error between the forecasts and
observations is to be minimized, use the original uninflated forecast.
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6. MOS FORECASTING IINTS ON USAGE

6.1 Interpretins Probabilities. Regardless of where a probability estimate
of an event that 1s yet to occur (or not occur) is obtained, the user of this
probability value 1s encumbered with a decision to be made. For example, if
the probability of precipitation (POP) occurrence is 37% at the 24-hour
forecast point, what will the yes/no forecast be for an important event such
as a retirement parade. First, what are the situational odds? POP at 37%
means that there is a 37% chance (i.e. 37 times out of 100) that it will
precipitate, but there is no indication of intensity or duration. Second,
should an arbitrary categorization rule be used to avoid a complex decision?
For example, 1f POP exceeds 50% then forecast the occurrence of rain. That
simple rule may not be true to the situation at hand, however. Reflect on
this situation: POP = 37%. Forecast rain and it doesn't: disappolntment
(had to have the ceremony in a smelly hangar). Forecast no-rain and it does:
anger (dumb Stormy). Forecast rain and it does: understanding disappointment
(better a smelly hangar than wet people). Forecast no-rain and no-rain
occurs: fresh-air happiness (nice Stormy). This situation makes the forecast
a little more personal, doesn't it? The individual forecaster put under
similar circumstances (since MOS doesn't account for everything), must use
his/her meteorology and look at all the other available information. Got a
storm radar-sensed band of precipitation coming into the area? This
additional information can be used to raise the POP estimate. Got an upper
level trough that will have passed through the area by parade time? That
should lower the POP. MOS can provide a reliable probability estimate of
future weather events, but on a practical (sometimes very practical)
day-to-day use, the local forecaster is the best source of fine-tuning. There
are only suggested ways to move the probability closer to zero or one, but
even when the adjusted POP is say, up to 80%, is that high enough to say,
"Yes, the parade will be a wash out?" One final note: The meaning of 37% was
spelled out above, but occasionally this gets misinterpreted. Some have been
told that a POP of 37% means that 37% of the area will be covered by
precipitation--noli: The statistical relationship that produces the POP value
was developed on the counts of precipitation occurrences found in surface
observations--not in any near-miss sense. Therefore, the MOS forecasts

estimate the probability of a "hit" at the statlion, not the areal coverage
around the station.

6.2 Limits of Predictability. There are other features about the probability
values that need to be known. One is that rare events (say, events with
relative frequency of occurrence of less than 2%) are not handled well by the
AWS MOS system. This i1s mostly due to the amount of events in the data
archive with which the MOS equations are made (i.e., a sample size problem).

A secondary, but just as valid, problem is the true predictive qualities of
the available predictors. That is, if certain fields from the PE model are
not well correlated with a sample of rare events, the statistical regression
technique will not be able to find enough hooks to link up the prognoses
fields to these rarec events. A large part of this has to do with the scale of
the phenomenon-—the PF smooths out scales that are truly pertinent to
thunderstorm forecasting, for example. On the other hand, the MOS equations
do very well with the more synoptic scale features such as temperature,
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altimeter setting, and wind. Another feature of the probability values is
their feasible range. Boehm (1976) illustrates that the distribution of
probability forecasts is a function of both the relative frequency of the
event (call this C) and the correlation between the forecasts and the
verifying observations (call this R). Experience shows, however, that MOS
equations which attempt to predict low-frequency events have low correlatioms,
and low correlations mean that the probabilities lose their sharpness (the
ability to be close to zero and one) and tend to cluster about the value C.
The binomial distribution can be used to illustrate the point for low values
of R« The mean of the probability forecasts is some value between zero and
one, and if the equations are reliable, this mean will be C, The standard
deviation of forecasts about this mean is the square root of C(1-C). Now, as
an example, let C=0,05 and you will compute the standard deviation to be
0.2179. As a rough approximation, 95% of the forecast probabilities will be
within + 2 standard deviations of the mean, or in the interval 0 to 0.486.
This means that a MOS forecast of an event that occurs at a climatological
rate of 5% will be hard pressed to deliver a forecast probability in excess of
50%:¢ This is not the fault of the MOS system, because virtually any
objective probability production procedure will have the same constraint,

It's in the mathematics.

6.3 Adjusting MOS to Local Conditions. There are no secrets here, just
hard-won experience and detailed local analysis of how MOS actually performed
over . the months. The use of large-scale area and time statistics are
available but ideas are offered that might help to improve local terminal
forecaster skills. The ideas that work the best may be different from
place-to-place.

6.3.1 Golden Rules of MOS Support. Lowry (1980) describes some golden rules
of MOS support that apply to NWS MOS. Those rules that are valid for AWS MOS
products are paraphrased:

6.3.1.1 Watch for systematic dynamic model errors. Since MOS was derived on
the relationship found between dynamic model outputs and surface observationms,
systematic model errors are accounted for through the statistical regression
equations that generate the MOS forecasts. Since MOS already accounts for the
long-haul average systematic error in the model, the MOS forecasts should not
be adjusted to account for these differences. One can, however, remove
smaller scale and daily deviations from the systematic errors to adjust MOS
forecasts.

6.3.1.2 Check for models agreement. If more than one model is involved in
the production of MOS forecasts, any disagreements will degrade the
reliability of the probabilities. If one can determine which model might be |
the more accurate for the situation at hand, modification of MOS guidance in

favor of that model is acceptable,

6.3.1.3 Watch the edges of spreading, or moving, meteorological events. For
example, nearby or upwind stations begin observing rain as the 40% POP-line
passes them--time the 40% POP-line passage at upstream locations. On another
day this may be the 60% line, and so forth.
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- 6.3.1.4 Watch out for tight forecast probability gradients. There mev 1=
i significant differences in probability of occurrence values between relatively
- close stations; therefore, a slight shift in a weather-producing system may
f:: push a particular station rather quickly into a low or high threat region.
€3 6.3.1.5 Add the local effects, Although local considerations such as station
k- elevation, latitude, longitude, and climate are offered to the MOS system as
"}f potential predictors, not 211 local effects are quantified. Local forecasters ‘
. know best how that nearby swamp, the urban heat island, or the valley ]
i}' orientation affects local weather to a degree that centralized generalization !
b | cannot match., Use this local knowledge to modify MOS forecasts accordingly.
b | 6+.3.1.6 Beware of rare events., A typical example is the occurrence of a
i tropical storm near the station of concern. Since very few of these events
2 are likely to have been in the data upon which the MOS equations were derived,
N such future events may not initialize the MOS forecasts sufficiently well.
ot} Anticipate, for example, the underestimate of wind speeds and precipitation
A amounts when a tropical storm might be influencing the area.
:ﬁ 6.3.1.7 Are there initialization errors in the basic models? MOS ties the ]
e | dynamics together in sensible ways (e.g. higher relative humidities link to ]
{: higher POP values, stronger low level winds link to higher surface wind o
¥ forecasts, etc.). Therefore, any additional knowledge, such as poor models i
.- initilization, can be used to modify MOS forecasts accordingly.
i; 6.3.1.8 Add later known data and meteorological information such as radar 4
o reports, PIREPS, satellite, local analyses, etc. All this information is not §
‘§$~ available to the MOS system directly nor is it as timely as the forecaster's i
(‘~- access., !
AN 6.3.2 Tracking Biases. The 11WS (Alaska) has a very comprehensive program on ]
vy MOS verification at individual stations and has documented ways to better take {
2 advantage of the MOS support. Completed analyses show, in part, the effect of !
8 NMC's model change from the PE to the spectral, because the MOS equations used
- in Alaska were developed originaily from PE-based forecast fields. For
example, the surface wind speed MOS equations include the mean boundary layer
" wind speed as a predictor. The change from PE to the spectral model redefined
{} the boundary layer (as the MOS System defines it) as a deeper layer; hence
:i stronger mean winds. Alaskan MOSVER shows a steady positive bias
ﬁi (overforecasting). Local biases documentation is important in order to adjust
the MOS forecast. To do this, separate charts should be maintained for each
eS| cycle (00Z and 12Z) and for each projection. For example, if one wants to
2 track local biases for temperature, you will need 2 cycles times 7 projections,
- 5 or 14 charts would be needed. Plot (or log) forecast and verified
- temperatures everyday and refer to these charts to help determine bias
o trends. Because there are 14 different MOS equations involved, 14 charts are
needed. In the case of ceilings with its 6 categories, there are 6x14 = 84
: equations involved. Since manually keeping 84 charts would most likely be too
;2 large an administrative burden, identify one, or only a few, forecast criteria
N problems (perhaps ceilings less than 1000 feet and less than 3000 feet). Keep
3: charts of the forecast "categories” (not the actual bulletin display values)
e
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and the accompanying verification categories. This would reduce the numbers
of charts needed. This charting technique 1s a subjective pattern recognition
procedure of sorts, This idea comes from the early 1970's AWS/DN trajectory
work where, for example, severe thunderstorm occurrences were often prececeded
by very characteristic trajectory forecast traces derived from charts plotted
daily.

Crowley (1981) shows another approach to improve local forecasts by charting
one MOS forecast element against another. He found a correlation between the
MOS minimum temperature forecasts and MOS wind speed forecasts. He plotted
the average temperature verification error (also called bias) as a function of
the wind speed forecasts. He clearly shows a technique that can be applied to
local MOS forecasts to enhance the original information. This idea can be
used to find Joint associations at any location.

6.3.3 Regional Verification. Verification of MOS forecasts (MOSVER)
performed at the Statistical Systems Section (AFGWC/TSMS) also provides a
means to assist local forecasters. For example, when the MOS bulletin
indicates that a particular station will have a category 2 ceiling, what are
the odds that the verifying ceiling will fall in category 1, category 2
(correct forecast), category 3, etc? These values can be computed from
archives of past MOS forecasts and observations, but are not available for all
locations. This problem is overcome to some degree by collecting a regiomal
set of MOSVER statistics.

Table 9 is such a collection. This verification table was created by first
noting what category the MOS forecast made (e.g., category 2) and then logging
the category of the actual verifying observation. In Table 9, for example, in
a sample of 960 MOS forecasts, 50 forecasts of category 2 were made and 11 of
these verified exactly in category 2. This table of raw numbers can now be
converted into a useful probability table for future use by the forecaster.
Table 10 is such a table. This table displays the conditional probabilities
of observing any particular category for all possible MOS forecast

categories. For example, if the MOS forecast is for category 5, the
probability of getting an exact category 5 verification is 35%, of verifying
in category 6 is 51%, of verifying lower than category 5 is 14% (sum of
categories 1 through 4 values), etc. Other information is also made available
to the forecaster such as the sample size that was used in computing these
probabilities and the sample climatology. These values are also computed from
the raw data in Table 9. Every other MOS forecast can be analyzed and used in
a manner similar to this.
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. Table 9. A Combined MOS Verification Contingency Table for the Stations at
“.: Beale, McClellan, Castle, Mather and Travis Air Force Bases.
= MOS FORECAST CATEGORY
L 1 2 3 4 5 6  TOTALS
L 1 4 1 1 1 1 9 17
! 2 14 11 3 4 3 6 41
< OBSERVED 3 4 4 9 8 2 9 36
\ CATEGORY 4 3 4 11 27 17 7 69
y 5 4 9 15 43 57 32 160
| 6 7 21 12 27 82 488 637
b | TOTS 36 50 51 Wp - sd62 - 551 960
N
|
.1 |
:::, Table 10. Table of Conditional Probabilities of Observed Event Category given
::: the MOS Forecast Category. These values are computed from Table 9 values.
| MOS FORECAST CATEGORY
i ' SAMPLE
3 1 2 3 4 5 6  CLIMO
3| 1 .11 «02 .02 .01 .01 .02 02
W 2 39 .27 06 W04 - 02 <01 M4
. OBSERVED 3 .11 .08 .18 .07 .01 02 .04
{ CATEGORY 4 .08 .08 s22 o3 g .01 +07
< 5 <13 .18 .29 .39 .35 .06 1
ke | 6 .19 42 24 25 a5 .89 .66
o ! SAMPLE 36 50 51 110 162 551 960
< | SIZE
b
N
)
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APPENDIX A

Miller—-Best II Threshold Model
by Lt Col D. L. Best

1. INTRODUCTION. This paper is a sequel to TDL Office Note 78~14, A Model
for Converting Probability Forecasts to Categorical Forecasts, by R. G. Miller
and D. L. Best. In the course of applying the original threshold model (now
referred to as the MB-I model) described in TDL 0.N. 78-14, results were
unsatisfactory in those cases where the MOS equations contained a low
correlation coefficient (R) and/or where the relative frequency (C) of the
forecast event was low. Since there are many instances where a low R and/or C
occurs, an investigation was launched to correct the problem. This paper
illustrates this weakness and presents a modification to the original model
that significantly reduces the low-end problem.

2., MB-II MODEL DEVELOPMENT.

a. ANALYSIS OF THE MB-I UNIT BIAS MODEL. The basic 1ssue is to derive
threshold probabilities that will convert a probability forecast into a
categorical forecast in such a way as to obtain a ratio of forecasts to
observed events (bias) of unity (i.e., forecast an event as often as it
occurs). The original MB-I model was designed for this desired response and
is solved by: p*=R(.5-C)+C. Considerable empirical evidence was collected
before confidence was established that this model indeed gave satisfactory
unit bias response. Upon reflection, however, the confidence-building cases
dealt with forecast equations that had reasonably healthly correlations (R)
and climatologies (C). Subsequent attempts to apply this model to certain
rare events like total precipitation greater than 1 inch showed a significant
underforecasting or less~than—one bias. To better understand what might have
been underlying this apparent failure, 134 pairs of correlation and
climatology (R,C) values from 134 MOS equations were run through special
computer programs to establish what the optimum threshold probability value
(p*) actually should be. This was done over the dependent development
sample. The equations' correlations (R) and climatologies (C) were then used
to compute the MB-I values. To judge the MB-I values against the ground-truth
values a simple ratio (MB-I values divided by optimum values) was chosen.
Figures 1 and 2 are the results of this procedure. Each figure has both of
the MB~I (labeled PM) and MB-II (labeled PB) model responses. Further
discussion will follow the introduction of the MB-II model below.

b. MB-II UNIT BIAS MODEL. The actual evolution of the MB-II model was
90% inspiration and 10% derivation. Historically, Miller and Best had
experimented with many forms of simple procedures and calculation schemes to
convert probability forecasts into categorical choices. The first acceptable
model and procedure was published in TDL ON 78-14. The earlier throw-away
techniques were revisited in hopes that a clue might be found for a simple
fix. Each was examined against the optimum p* data file through plot
analyses. One particular model had a curious effect when compared to the MB-T
model response: 1t was practically the mirror image. 1In other words, where
M3-1 was producing p* cstimates too high, the other technique was producing p*
estimates too low, and vice versa. This model was a weighted-means technique:

40

-':’\.'F‘:J te ~,'..‘ 'ol"-‘:'-..'c T SO R S RO T T I IR S LN e PR ) S




e
RO

]Q

L5¢

’x{'

o

»

Ny

W WY LY

wt lal F

------
ST Ot SR R S T R i S e A )

p* = C m, + (1-C) m AL

where C was defined above, m, is the mean of the probability forecasts when
the verifying observation showed non-occurrence (Y=0), and mj is the mean of
probability forecasts when the verifying observation showed occurrence (Y=1).

Miller and Best (1981) showed that in terms of the foreccast equations' R
and C values:

m, = C(1-R2) and (2)

m; = RZ + C(1-R2) (3)

Entering (2) and (3) into (1) and with some manipulation yields.
p*o T 02R2 (OS—C)+C (4)

The final inspiration that led to the MB-II version was that if two
methods had opposite weaknesses and their responses bracketed the desired

solution, why not simply take the mean of the two and define a new model (thus
the MB-II):

p* = .5 (R(.5-C)+C+.2R2 (.5-C) +C)
which reduces to
p* = (S5+R)R(.5-C)+C (5)

Thus the MB-II model varies only by the correlation control factor and both
have the same general form as the MB-I model:

p* = F(.5-C)+C
where F=R in MB-I and F=(.5+R)R in MB-II.

3. DISCUSSION AND CONCLUSIONS. Figures 1 and 2 demonstrate that MB-II is
better able to fit the optimum threshold values at lower R and C values than
the MB-I. Figure 1 shows that over the range of possible correlations, MB-I
loses its fit below R=.3, but the MB-II extends the fit down to R=.1 before
failing. In the region below R=.1, MB-II provides p* estimates closer to
optimum than does MB-I even though both are weak there.

Figure 2 shows much the same effects as described above over the range of
climatology (relative frequency of the event). Here, MB-I loses fit below
C=.,05 whereas MB-II is accurate down to a low C=.01,

It is difficult to rationalize why anyonme would want to use probability
forecasts that come from equations with correlations and climatologies in the
low limits where MB-I breaks down. However, the business of weather
forecasting in many instances, finds its benefit and value to the customers of
weather support in the skills of forecasting the rarer events (i.e. low C).
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The MB-II goes a long way, therefore, in meeting this need over MB-I,
particularly if one is challenged to convert low-end probability forecasts to
yes-no decisions.

CLOSING NOTE: This method has been improved upon by Miller and Best (1981) by
a parameterization of the probability forecasts into betadistributions., This
newer methodology permits a wide range of threshold values to be computed
depending on desired categorical responses——a key to optimizing customer
support.
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AN APPENDIX B
List of Overseas Qperational and Development Stations

OPERATIONAIL STATION LIST

EUROPE (EUR)

Region 1
NUMBER ICAQ NAME LAT LONG
010100 ENAN Andoya/Andenes, NO 69018'N 16°07'E
010230 ENDU Bardufoss, NO 690904 'N 18032'E
011520 ENBO Bodo, NO 67917'N 14025'E
011830 ENEV Evenes, NO 68°30'N 16941'E
012410 ENOL Orland, NO 63042'N 9037'E
012710 ENVA Vaernes, NO 63028'N 10956'E
013110 ENBR Bergan/Flesland, NO 60017'N 5013'E
014150 ENZV Stavanger/Sola, NO 58053'N 5038'E
Region 2
NUMBER ICAO NAME IAT LONG
030680 EGQS Lossiemonth, UK 57943'N 3020'W
030750 EGPC Wick, UK 58027'N 3005'w
030910 EGPD Aberdeen/Dyce, UK 57012'N 2012'w
031300 EGOY West Freugh, UK 54051'N 4057'W
032040 EGNS Isle of Man/Ronald, UK 54005'N 4038'w
032570 EGXE Leeming, UK 54018'N 1032'w
033600 EGXI Finninglery, UK 53029'N 1°00'w
Region 3
NUMBER ICAO NAME LAT LONG
033770 EGXN  Waddington, UK 53510'N 0031'w
033790 EGYD Cranwell, UK 530902°*'N 0°30'wW
033910 EGXC Coningsby, UK 53°05'N 0°10'w
033951 EGXA Manby, UK 53021°'N 0005'E
034620 EGXT Wittering, UK 52037'N 0028'w
034700 EGYH Holbeach Gun Range, UK 52051'N 0°10'E
034701 EGUP Sculthorpe, UK 52050'N 0945'E
034950 EGYC Colitshall, UK 52046'N 19021'E
035580 EGVW Bedford, UK 52013'N 0029'w
035621 EGWZ Alconbury, UK 52022'N 0°13'w
035771 EGUN Mildenhall, UK 52022'N 0029'E
035831 EGUL Lakenheath, UK 52024'N 00°34'E
TR 035951 EGVG  Woodbridge, UK 52005'N 1924'E
:,3 035961 EGVJ Bentwaters, UK 52008'N 1026'E
sin 036440 EGVA Fairford, UK 51941'N 1046'W
o2y 036490 EGVN Brize Norton, UK 51045'N 1935'w
~IN 036531 EGUD  Abingdon, UK 51941'N 1°19'w
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NUMBER ICAO  NAME LAT LONG
036551 EGUA Upper Heyford, UK 51956'N 1015'W
036580 EGUB Benson, UK 51°37'N 1°05'w
036880 EGVT Weathersfield, UK 51058'N 0030'E
037435 EGVI Greenham Common, UK 51°923'N 1017'W
!' 037460 EGDM  Boscombe Down, UK 51°10°'N 1945'W
By 037610 EGVO  Odiham, UK 51°15'N 0057'W
;:'--2 037660 EGUF Farnborough, UK 51°17'N 0945'W
e
:::-_('. Region 4

; (]
-
L -~

There are no operational stations in this region,

.~ f 2

- '.: Region 5
Bl NUMBER ICAO  NAME LAT LONG
Bat 080870 LEBR Bardenas Reales, SP 42012'N 1027'W
] 081605 LEZA  Zaragoza (USAF), SP 41940'N 1002'wW
-"'-;" 081810 LEBL Barcelona/Munta, SP 41°17'N 2004'E
| £ 4 082270 LETO Madrid/Torre jon, SP 40029'N 3027'W
g ] 083970 LEMO  Moron De La Frontera, SP 37909'N 5936'W
N 084100 LEBA Cordoba, SP 37951'N 4051'W
084490 LERT Rota Naval Station, SP 36°39'N 6221'W
| 084820 LEMG  Malaga, SP 36°39'N 4028y
]
EF::: : Region 6
Sl NUMBER ICAO  NAME IAT LONG
Ve | 060300 EKYT Alborg, DN 57°06'N 9952'E
i 060600 EKKA  Karup, DN 56017'N 9°08'E
e | 061000 EKVA  Vandel, DN 55943'N 9°13'E
P 061100 EKSP  Skrydstrup, DN 55014'N 9°16'E
Dy
g Region 7
k)
_n NUMBER ICAO  NAME LAT LONG
S 062650 EHSB  Soesterberg, NL 52008'N 5016'E
o 062900 EHTW  Twenthe/Enshed, NL 52°16'N 6°54'E
5 063401 EHWO  Woensdrecht, NL 51027'N 4921'E
063500 EHGR  Gilze/Rijen, NL 51934'N 4056'E
063750 EHVK  Volkel, NL 51°39'N 5042'E
hd 063850 EHDP De Peel/Venray, NL 53°31'N 5952'8
o 064000 EBFN Koksijde, BX 51905°'N 2939'E
:2;::. 064320 EBCV Chievres, BX 50034'N 3050'E
4 064560 EBFS Florennes, BX 50014'N 4°39'E
Pk 064790 EBBL Klein~Brogel, BX 51°10'N 5028'E
£ 100220 EDNL Leck, DL 54048'N 8057'E
L2 100460 EDCK  Kiel/Holteau, DL 54023'N 10909'E
i 100380 EDNQ  Hohn/Rendsburg, DL 54019'N 9032'E
ity 101220 EDNJ  Jever, DL 53932'N 795348
T | 101360 EDCN  Nordhotz-Spieka, DL 53946'N 8940'E
o |
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NUMBER ICAO NAME

101470 EDDH Hamburg, DL

102180 EDNA Alhorn, DL

102340 EDCR Rotenburg/Hannover, DL
102530 = Luchow, DL

103370 EDCD Hildesheim, DL

103430 EDCL Celle, DL

104020 EDUW Wildenrath, DL

104040 EDNZ  Goch, DL

104190 - Ludenscheid, DL

104270 = Kahler Asten, DL
104390 EDPF Fritzlar, DL

104440 = Gottinger, DL
104520 = Braunlage, DL
105010 EDCM Aachen, DL

105020 EDNN Norvenich, DL
105090 EDCU Butzweilerhof, DL
105260 = Marienberg, DL
105325 EDEV Friedburg AAF, DL
105420 = Bad Hersfeld, DL
105445 EDEX Fulda AAF, DL
106070 EDAD Spangdalem, DL
106100 EDAB  Bitburg, DL
106160 EDAH Hahn, DL

106190 EDZJ Baumholder, DL
106265 EDEH Bad Kreuznach AAF, DL
Region 8

There are no operational stations in this region,

Region 9

NUMBER ICAO NAME

091770 - Teterow, DD

091800 ETBH  Barth, DD

092700 = Neuruppin, DD

093610 = Magdeburg, DD

094690 ETLS Leipzig/Schkeuditz, DD
103840 EDBB Berlin, DL

Region 10

NUMBER ICAO NAME

095540 ETEF Erfut/Bindersleben, DD
095780 <= Fichtelberg, DD

106140 EDAR Ramstein, DL

106145 EDIV Pirmassens AAF, DL
106335 EDOT Finthen AAF/Mainz, DL
106370 EDDF Frankfurt/Main, DL
106405 EDEN Maurice Rose AF, DL

47

TAT
53038'N
52053'N
53008 'N
52058'N
52011'N
52036'N
51007 'N
51941'N
51014'N
51011'N
51907'N
51933'N
51943'N
50047'N
50050'N
50059'N
50040 "N
50020°'N
50052 'N
50033'N
49058'N
49057'N
49057'N
49038'N
49951'N

LAT

53046'N
54020°'N
52054'N
52906'N
51025°'N
52028'N

1AT

50059'N
50026 'N
49026'N
49013°'N
49058'N
50003'N
50011'N

LONG
QO059'E
8014'E
9021'E
11°10'E
9057'E
10002'E
6013'E
6°10'E
7036'E
8029'E
9017'E
9057'E
10°37'E
6°06'E
6940'E
6953'E
7058'E
8044'E
9042'E
9039'E
6C42'E
6°34'E
7016'E
7018'E
7053'E

LovG
12037'E
12043'E
12049'E
11035'E
12014'E
13024'E

LONG
10058'E
12957'&

7935'E

793778

8009'E

8035'E

8040'E
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NUMBER ICAO NAME
106420 EDID Hanau, DL
106570 EDOF Wertheim AAF, DL
106585 EDEG Bad Kissingen, DL
106590 EDIN Kitzingen AAF, DL
106595 EDEU Giebelstadt AAF, DL
106710 - Coburrg, DL
106755 EDEJ Bamburg AAF, DL
106850 EDQM Hof, DL
106870 EDIC Grafenwohr, DL
107120 EDAS Sembach, DL
107140 EDAM Zwiebrucken, DL
107220 EDAL  Sollingen, DL
107295 EDOR Coleman AAF, DL
107340 EDIE Heidelberg, DL
107380 EDDS Stuttgart/Echter, DL
107382 - Goppingen AAF, DL
107450 EDOP Schwabisch Hall, DL
107520 EDIK Illesheim AAF, DL
107550 EDEB Ansbach/Katterbach, DL
107640 EDIG Feucht AAF, DL
107715 EDIH Hohenfels AAF, DL
107880 EDPS Straubing, DL
107960 = Zwiesel, DL
108050 EDAN Lahr, DL
108450 EDSD Leipheim Donau, DL
108530 EDSU Neuberg/Donau, DL
108560 EDSL Lechfeld, DL
108570 EDSA Landsberg/Lech, DL
108600 EDSI Ingolstadt, DL
108620 EDAV Siegenberg GR, DL
108660 EDDM Munchen/Rien, DL
108690 EDSE Erding, DL
109000 EDSG Bremgarten, DL
109080 - Feldberg/Scwarz, DL
109210 EDPH Neuhausen Ob Eck, DL
109470 EDSM Memmingen, DL
109530 EDSK Kaufbeuren, DL
114140 LKKV Karlovy Vary, CZ
114480 - Plzen/Dobrany, CZ
! 115180 LKPR Prague/Ruzyne, CZ
| 115351 - Bechyne, CZ
3 | 116360 - Kostelni Myslov, CZ
b |
b§di Region 11
e |
2 | NUMBER  ICAO  NAME
93 | 109711 DOV Bad Tolz, DL
(- 110100 LOWL Linz/Horsching, 0S
4 160365 LIYW Aviano (USAF), IY
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LAT
50910°'N
49946 N
50012'N
49045°'N
49039'N

-+ 50016'N

49955'N
50019'N
49042'N
49031'N
49°13'N
48047'N
49034°'N
49924 °'N
48941°'N
48043'N
49007'N
49028'N
49019'N
49023'N
49013'N
48949'N
49001'N
48022'N
48926°'N
48043'N
48011'N
48004'N
48943'N
48045°'N
48°08'N
48°19'N
47954°'N
47052°'N
47059°'N
47959°'N
47052°'N
50012'N
49940°'N
50°06'N
49°16°'N
49°11°'N

LAT
47%56'N
48914°'N
46002°'N

LONG
8057 'E
9029'E

10906'E

10°12'E
9058'E

10057'E

10955'E

11°53'E

11957'E
7052'E
7025'E
8005'E
8028'E
8039'E
9012'E
9041'E
9047'E

10023'E

10°38'E

11°11'E
11°50'E

12935'E

13°15'E
7950'E

10°14'E
11°13'E

10952'E

10054 'E

11°32'E

1198'E

11943'E

11957'E
7°37'E
8900'E
8954'E

10°14'E

10°37'E

12054'E

13°17'E

14°15'E
14°30'E

15928'E

LONG
11°36'E
14°11°E
12°36"E
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Region 12
NUMBER ICAO  NAME TAT LONG
160660 LIMC Milano/Malpensa, IY 45037°'N 8044 F
160840 LIMS Piacenza, IY 44055'N 9044 E
160880 LIPL Brescia/Ghedi, IY 45025'N 10917'E
160900 LIPX Verona, IY 45023'N 10052'E
161490 LIPR Rimini, IY 44001°'N 12038'E
163120 LIBV Gioia Del Colle, IY 40046°'N 16956'E
163180 LIBX Martina Franca, IY 40042*'N 17020'E
Region 13
NUMBER ICAO  NAME LAT LONG
161580 LIRP Pisa/San Guisto, IY 43040'N 10923'E
162390 LIRA Rome, IY 41048°'N 12035'E
162530 LIRM Grazzanise, 1Y 41004'N 14005'E
162890 LIRN Naples/Capodich, IY 40053'N 14018'E
164220 LICR Reggio/Calabria, IY 38005'N 15039'E
164590 LICZ Catania/Sigonel, IY 37024'N 14055°'E
165310 LIEO Olbia/Costa Smerald, IY 40054'N 9031'E
165460 LIED Decimomannu, IY 39021°'N 8058'E
603900 DAAG  Algiers, AL 36043'N 3015'E
607150 DTTA Tunis, TS 36050'N 10014'E
620100 HLLT Tripoli, LY 32041'N 13010'E
Region 14
NUMBER ICAO NAME LAT LONG
110360 LOWW Wien/Schwechat, 0S 48%07°'N 16934'E
Region 15
There are no operational stations in this region.
Region 16
NUMBER ICAO NAME LAT LONG
166480 LGLR Larisa, GR 39039'N 22027'E
166651 LGBL Nea Ankhialos, GR 39013'N 22048'E
166220 IGTS Thessaloniki, GR 40030°*'N 22058'E
166990 LGTG Tanagra, GR 38019'N 23032'E
167160 LGAT Athens/Hellinikon, GR 37054'N 23044'E
170600 LTBA Istanbul/Yeslik, TU 40058'N 28049'E
171150 LTBG Bandirma, TU 40021°'N 27058'E
171500 LTBF Balikesir, Tu 39039'N 27052'E
172180 LTBL Izmir/Cigli, TU 38030*'N 27901'E
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Region 17 i

‘ NUMBER ICAO  NAME LAT LONG
170290 LTAQ Samsun, TU 41916'N 36018'E
3 170820 LTAP Merzifon, TU 40051'N 359035'E
i 170965 LTCE Erzurum, TU 39057°N 41°10'E
{ 171240 LTBI Eskisehir, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>